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Summary

The paper studies and proposes the density estimation methodology 
as an alternative of modelling the economy as a set of economic 
variables. In the study, we pose the density estimates for economic 
variables in one and multidimensional case. This is done using 
several kernels, which are selected as probability density functions. 
In the one dimensional case, Gaussian, triangle, rectangle and 
Epanechnikov kernels are used. In the multidimensional case, 
Gaussian and Epanechnikov kernel are used. For the first time, 
we give the form of the densities (density estimates) of economic 
variables in their general form, based on density estimation 
methods. The methodology is illustrated on a set of economic data 
in the case of the Albanian economy. Graphical representations of 
the density estimates are given for selected scalar variables and 
two dimensional vectors. The paper also includes the algorithms 
for calculating the density estimates given in the paper. General 
discussions on the methodology together with clear references on 
the literature are given.

The views expressed in this paper are those of the authors and do 
not necessarily reflect the position of the Bank of Albania.

JEL classification: C18, C51, C81, C82.

Keywords: empirical investigation, economic modelling, density 
estimation, joint density of economic variables, bandwidth, kernel 
function, distribution function estimation, mean square error, mean 
integrated square error.

“If I understand something, I can simulate it”. J. Gentle
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1. Introduction

Understanding economic relationships and accurately modelling 
them play an important role from the analysis, policy making and 
forecasting point of view. These relationships are summarised 
in economic models both theoretic and empiric, single or 
multidimensional ones. The tools that the economic science 
uses are the hypothesis testing and the statistical analysis of 
the history of the random economic variables (time series 
analysis). Both approaches are building upon the mathematic 
fundamentals, like the theory of random processes, solution of 
the systems of simultaneous difference equations, and a large 
set of reasonable and “compulsory” assumptions regarding 
behaviour of the economy and the statistical properties of the 
data. This direction has defined the development of economics 
during the last 40 years. Yet despite such advances, currently, 
economics is suffering a setback for its unrealistic representation 
of the real economic phenomenon. An important element of the 
above mentioned critique focuses on the inability of the models 
to embody the stochastic nature of the real life.

This paper presents and discusses a new alternative econometric 
(statistic) method, which relies on the estimation of joint density 
probability function of the random economic variables. The 
general objective of this paper it to pose density estimation 
method as a toolkit to help understand and possibly replicate the 
random process that generates the vectors of economic data of 
interest at each moment in time or for a given time interval. That 
means to uniquely portray the density estimation of the set of 
variables that describe the economy and potentially identify the 
model that yields the consecutive value or the set of future values 
when the past and current values of the related variables and the 
own past values are known. 

The uses of the density estimation methods have aroused 
increasing interest in many fields where further details on the 
distribution of the random variables have to be studied. For 
many years, it has become a deep research in the evaluation of 
estimates to better align with the functions coming from a real 
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phenomenon, without making undue assumptions on specific 
elements in advance, which joint together can change the 
behaviour of the model as a whole.

In this project, we aimed among others, to bring this method 
to the attention of methodical statistical specialists in the field 
of applied economics, based on the rigorous mathematical 
definitions. In that way, we tend to create a clear perception, 
not only as a set of tools for theoretical applications, but also 
formally applying it in a multiple dimensional space, based on 
the perception of the economy as a space generated from a 
number of random variables. We discuss the potential of this 
new method and apply it in the case of the Albanian economy to 
provide a discussion on the monetary policy.

Current models that are used for forecasts and analysis have 
come under fierce critique from the public, politicians, and 
business. As a matter of fact, what is called “the failure of the 
current models” was so to say predicted by several economists, 
expressed in its best form by Lucas (with Lucas critique). Another 
prominent economist Solow (1985) states that “…economic 
theory learns nothing from economic history, and economic 
history is as much corrupted as enriched by economic theory”.1 
Solo did return to the same theme in 2010 with a similar critique 
of the macro econometric models pointing to the failure of current 
models to predict the last crisis and yield reliable policy solutions 
for the financial and economic mess that followed. The main and 
most important part of this critique emphasizes three important 
facts. First, models are way too rigid and too stylized to describe 
the stochastic nature and the number of deterministic trends of real 
life. Second, life is too dynamic to yield long enough stationary 
series of random variables or support hypothesis testing approach. 
And third, a little cleverness and data mining can yield the desired 
yet good enough to be accepted statistical results. 

As this is not enough, there exist however differences in the way 
theoretical economists and econometricians see the world, as it 

1 S olow R. (1985), Economic History and Economics, “The American Economic 
Review”, Vol. 75, No. 2, May 1985.
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is elaborately shown by Juselius and Franchi (2007). The former 
would start from a specific theory to build the model based on 
the particular believed theoretic knowledge upon which the entire 
model is constrained. In other words, the model is built to fit a 
predesigned theoretic structure. The latter observe that this structure 
is way too rigid to describe the real life data. Their approach let the 
data build the model, albeit adding particular structure of their own 
in the identification process.2 

Both methods constrain reality with their structure and assumption 
to make it adoptable to the available toolkits. In this process, 
both methods transform reality to take it to the laboratory. The 
alternative would be to study the reality, in its natural form outside 
the framework of parameterised standard models.

Meanwhile, it is known that the probability density is the framework 
that fully explains probability behaviour of a variable or phenomenon. 
Therefore, the attention on the applied economics and finance 
should be directed not only to the study of the densities of the 
random variables, but also to the investigation of the probabilities 
of the random events. The mutual implications that arise from the 
interaction among these random variables define the behaviour 
of random phenomena that we study and can be useful in their 
modelling. Economy is a good example of this multidimensional 
space.

Currently, there exist advanced techniques that show how to 
construct a density estimate, with a good approximation to the real 
one. These methods are used in different fields of application where 
density estimation provides the statistical framework to interpret the 
probability density of random events and make accurate assumptions 
from these interpretations regarding future developments (i.e. 
the behaviour of this probabilistic phenomenon in the future). 
This framework could be also useful in the discussion of different 
episodes and shock scenarios exploring what would happen to the 
probability density of a scalar or vectorial random variable and 
what the consequences of potential changes in the probability 
densities are. This new form of the conditional densities of random 

2 T hese assumptions will be discussed in details in chapter 2
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phenomena, represented by some fixed conditional variables, 
represents an alternative method of empirical investigation that is 
worth exploring to measure and forecast the impact of certain fixed 
conditions in the performance of the densities of other variables in 
a random phenomenon.

Also, the progress of the probability density over time could be 
another alternative method to see the development of the real 
phenomena across time.

The rest of this working paper is organized as follows:

The second chapter discusses the definition and representation 
of economy as a multidimensional phenomenon and, in this 
way, opens the road to the discussion of the multidimensional 
density estimation as an appropriate framework for its empirical 
investigation. 

The third chapter describes the methodology of density estimates. 
The main applied methods are given together with the description 
of the main literature used. 

The fourth chapter provides the concrete form of the density estimates 
of one and d dimensional economic variables. In addition, it offers 
a broad discussion on the parameters, measures of discrepancy 
and efficiency issues related with the method.

The fifth chapter discusses the intuition, results and data.

The sixth chapter provides concrete applications of the density 
estimation with the economic data from the Albanian economy. 
Density estimates are given on one and two dimensional variables. 
Also, graphs and comments on graphical representations are given 
as concrete applications of the methods.

The seventh chapter concludes the study. 

The eighth chapter provides general discussions on the methodology 
and some directions for our future research.
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The last part includes the literature used for the study.

In the appendices, there are graphics representations and relating 
comments and corresponding algorithms to construct the density 
estimates we applied.

The main symbols used in this paper are as follows

Small letters xi are used for the numerical values of the sample.
Capital letters Xi are used for the sample, as random variables.
The underscore sign on each letter, i.e. t or x, means that this is a 
vector.
h is the smoothing parameter, or the bandwidth – relating with the 
histogram concept.
f(.) is the density of the phenomena (of the random variable) that 
we will estimate.
f(.) is the density estimate.
π is the mathematical constant, calculated as π ≈ 3.14159.
PDF stands for probability density functions.
JPDF stands for joint probability distributions.
PDA stands for probability distribution analysis.
MSE means squared error at a point.
MISE means integrated squared error.
DGP means data generating process.
p.i.t. means probability integral transforms.
ALL means Albanian Lek (currency).

 ̂
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2. Portraying the economy as a random 
multidimensional event

Social events like economics represent multidimensional 
simultaneous random events that result from the interaction of 
many variables, each embodied with a certain probability density 
function. We study this social phenomenon along its many 
dimensions, which we perceive like economic variables. This view 
of the economy as a social phenomenon is discussed by Hendry 
and Richard (1983). In their definition, economy is the interaction 
among economic variables that we observe as a set of economic 
data, hence the data generating process (DGP). The analysis of the 
economy is related to this definition of the random economic event 
as a data generation process (DGP), meaning the natural process 
that generates the particular behaviour of an experiment through 
time and space. Economy as random event and the DGP are later 
reviewed by Ericsson, Hendry and Mizon (1998), who formalise 
the definition of the economy or economic behaviour in the form 
of a multiple dimensional random process. The authors describe 
the DGP in the form of a probability space [Ω, F, P(.)], where Ω 
represents a sample space of the vectors of d variables, denoted 
vector xt, that describes the process (in the study of economics 
that would describe xt as a vector whose elements represent the 
measurements at time period t Є T where T = {1, 2, …, tlast} for 
variables like inflation, GDP, unemployment, money demand, 
interest rates, etc.), F is the event space (e.g. the event that all 
economic variables mentioned above take a particular value 
simultaneously), and P(∙) is the probability measure for the events 
in F (e.g. the probability that a particular combination of variables 
materialises at time t).

The DGP is formally expressed as the joint density function of the 
initial conditions or vector X0, a vector of parameters ζ, and all the 
subsequent vectors xt for all t Є {1, 2, …, tlast-1} as follows:

DX(XT│X0,ζ) = ∏T
(t=1)Dx (xt│Xt-1,ζt ),		  2.1.

where Xt-1 represents the stochastic process (X0, x1,…,xt-1) and ζt 
represents a subset of the parameters set ζ = (ζt, …, ζT), whose value 
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is assumed to be known to the researcher or the policy making 
authorities (or it is the object of inquiry of the research). The set 
of parameters is the mechanism that relates all random variables 
together and for that reason estimation of ζ = (ζt, …,ζT) is the focus of 
the empiric research. The estimation of the parameters is necessary 
for forecasts and policy analysis and renders this probabilistic 
representation of the economy useful to authorities. This is the 
time series method at its best and more complete analysis with the 
Sims (1980) VAR approach and its later developments including 
structural VARs and VECM. Referring to Hendry and Richard (1983), 
Juselius (2006) describes the VAR analysis as a very convenient way 
to explain economic behaviour of the rational agents with partial 
information. Therefore it becomes a useful tool in the hands of the 
policy makers. The time series representation of the DGP process 
has the formulation conditional process of marginal events given 
the knowledge of initial conditions X0 and the parameter matrix that 
describes the stochastic process in the vector of the random variables 
of the random events. In principal this is done by consequently 
decomposing the joint probability into a conditional probability and 
marginal probability for each t ϵ T repeating the process until we 
reach t0 as in eq. 2.1. above. Therefore the VAR process describes 
the conditional process {xt│X0

(t-1)}~N(μ, Ω).

The method has been very well accepted because it does a good 
job in describing the economy.3 The framework is formally based 
on the time series and linear spaces theory and the solution comes 
in the form of a set of parameters that depict the relationships 
among the present and past values of the variables of interest. Such 
coefficients would allow the policymaker to predict the jump in the 
variable xt along with the accompanied i.i.d. vector of errors, which 
accounts for the errors of estimation and "fits" the model to the 
stochastic real world. However, the estimation of the parameters 
requires the following assumptions:

-	T hat all xt have the same distribution which is approximately 
normal with known first and second moment. 

-	 Constant mean and variance 

3 S ee Stock and Watson (2001) for a detailed analysis of the VAR and its performance.
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Both assumptions impose very strong restrictions on the data and 
the random process Xt. Moreover, several other long and short term 
restrictions of assumed theoretic relationships and identifications 
are imposed and required to generate a uniquely identified solution 
(referring to the decomposition or ordering of endogenous shocks), 
enforcing additional structure in the assumed data generating 
process.4 The fundamental question is whether these assumptions 
and the imposed structure are taking the econometric model away 
from the DGP? One can't help asking whether this approach 
takes the assumed model away from the real DGP. Hendry (2011) 
summarises this discussion in six problems related to the knowledge 
about DGP and the estimated parameters:

-	S pecification of the set of relevant variables,
-	M easurement of x – s,
-	F ormulation of the DXT(∙)
-	M odeling of the relationships,
-	E stimation of parameters,
-	P roperties of DXT(∙), which determine the intrinsic uncertainty.

Among these problems, we would like to address the first, mix the 
third with the fourth and eliminate the fifth with a new non parametric 
pack of methods. In general we propose to study the DGP without 
related assumptions and the imposed theoretic structure. We 
instead focus on the study of the joint PDF and CDF of the DGP for 
all the variables. 

This alternative situation observes and studies the DGP as a random 
event in the form of a joint probability density function rather than in 
the form of a system of difference equations (or rather than seeking 
the solution of a system of difference equations). The joint PDF 
that we propose preserves the simultaneity of the events despite 
dropping the time index, in similar fashion as time series does. 
Then, conditioning the dataset to reflect researchers’ expectations 
regarding one or more of the random variables can generate a 
conditional forecast or analysis for the random event that reflects 
those expected developments.

4 S ee Juselius and Franchi (2007) for a detailed discussion of the implication of the 
imposed theoretic restrictions and their implications. 
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In principal, this nonparametric analysis would eliminate the 
need for the marginalization and the conditioning assumptions 
of constant mean and variance required by the current empiric 
estimation methods. It is an alternative way of estimation of the 
economic phenomenon in its original DGP form. Considering the 
DGP that results from the random event we call economy, one 
can reasonably define the economy as a multidimensional space 
generated by d different random variables (where d corresponds to 
the number of chosen variables), in which each m (where m < d) 
dimensional space represents a subspace of the entire space of our 
random event. If we were to scale all these possible   spaces in their 
relationship, we will get the follows: . 
It would mean that starting from , each following event would 
represent a new possible subspace of the original d dimensional 
event. It would simultaneously mean that in substance we can 
represent the economy as an expanding sequence of spaces.

Assuming that all added variables are linearly dependent on the 
first chosen variables means that the new space will carry itself 
and so preserve the same DGP along fewer dimensions. If one or 
more of the new added variables are independent from the rest (or 
exogenous), then the distribution of the new space will also ‘carry’ 
this attribute to its distribution. These are all the conditions that we 
have to judge through joint densities of the variables creating those 
spaces. The proposed investigation method is developed upon 
the framework of density estimation of the DGP. Therefore, the 
following chapter provides an extended discussion of the density 
estimation of the single and multidimensional random events.
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3. A description of the methods of 
density estimation

Probability density function is called a nonnegative function f(.), 
that satisfies the condition:

∀a, b ∈ R∶ P(a < X < b) = ∫a

b  f(x)dx.				    3.1.

Knowing or estimating the probability distribution is an essential 
purpose in probability, based on the fact that: all the information of 
a random variable is contained by the values of this function and its 
probability distribution. The first part of this fundamental concept, 
consists in finding the values of a function (random variable in 
our case). On the other hand, it takes much effort to estimate the 
probability distribution.

Generally, the evaluation of the distributions (and the densities in 
particular) develops in two directions. The first study case, probably 
more explored in the literature, is the case of parametric distributions. 
It means that the sample data is assumed that comes from a random 
variable with known parameterized probability distribution, and 
what should be achieved is the estimation of the parameters.

The second study case is the estimation of non-parametric 
distributions – and it includes the situations where no preliminary 
information on distributions is available. Estimation of densities, 
in the frame used in this article, will focus on this second study 
case, and will also assume that the sample is made from random 
variable with a probability distribution function f.

In substance, density estimation is a natural generalization of the 
histogram of the sample from a random variable or vector – setting 
aside the histogram as a naive estimator. While the "kernel density 
estimation", as a part of density estimation, can be seen as analog 
transformation of Fourier transformation of a periodic function, or 
Taylor expansions of a continuous function.5

5 T he density estimation theory is described in several monographies and other 
literature mentioned in the article.
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In that concept, let us mention a simple generalization of the 
histogram, in its classic form, as treated in the corresponding 
literature. Thus, assume that we have a sample x1, x2, …,xn, from the 
random variable X, let x0 be a starting point and h the parameter of 
the bin width. The h parameter acts as a smoothing parameter, in 
the meaning that increasing the value of h suppresses the statistical 
noise and gradually wipes the statistical significance of the curve 
while, while decreasing the value of h increases the statistical noise 
and gradually makes the statistical unreadable.6 

In the right-closed intervals [x0 +mh, x0 + (m+1)h[7 build verticals 
equal with absolute or relative quantity of the number of xi that fall 
in the same interval. Functional form of the histogram can be given:

f ̂(t) =  ∙ (nr.of xi in the same interval with t)	 3.2.

If the random variable X has the density f(.), it is true that:

f(t) = lim   P(t-h < X < t+h)
h→0

		 3.3.

Then, as a natural estimator of the density f(.), we can have:

f ̂(t) =  ∙ (nr. of  xi∈ ]t-h, t+h[ )			   3.4.

In a more formal way, the above estimator can be written:

f ̂(t) =  ∙ ∑n
i=1w , where w(x) =  	 3.5.

The above estimator in the literature is known as "naive estimator” 
and has two main features: first, it is a direct generalization of 
the histogram, and second, its canonical form allows the further 
generalization into the "kernel density estimation”.8

The estimation using a kernel is a natural generalization of the 
expression given in 3.5. Assume that K(x) is a density probability 

6  Discussions of the smoothing parameter h are given in the eighth chapter.
7 T he choice of x0 may have no restrictions in the classical way of building the histogram.
8 O ther methods are in place and they are not the focus of this paper.
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function. In the terminology of "density estimation" such a function 
used hereinafter will be called kernel function (or simply Kernel). If 
the function w(x) is substituted with kernel K(x) in the expression 
3.5., the general form of density kernel estimation takes the form:

f ̂(t) =  ∙ ∑n
i=1K , where h is smoothing parameter.	 3.6.

As it is described in detail in the following chapter, in the case of 
random vectors the main form of the kernel density estimation is 
the same. The methods of density estimation are described in some 
main monographies and textbooks.

Description of the main literature:

The literature on density estimation is extensive. First, basic ideas 
come with Fix and Hodges (1951) and Akaike (1954). Influential 
papers of Rosenblatt (1956) and Parzen (1962) initiated the 
mathematical theory and stimulated further interest in the subject. 
For an overview of the literature on kernel density estimation, 
we refer to the books of Devroye and Gyorfi (1985), Silverman 
(1986), Devroye (1987), Wand and Jones (1995), and Devroye 
and Lugosi (2000).

The derivation of the Epanechnikov kernel from optimization 
arguments is due to Bartlett (1963) and Epanechnikov (1969). 
Hodges and Lehmann (1956) did it even earlier, although not in 
the context of density estimation. A short proof implying that the 
Epanechnikov Kernel is the optimum estimator in the meaning of 
the mean square error is given, e.g., by Devroye and Gyorfi (1985). 

Wand and Jones (1995), “Kernel Smoothing”, Chapman Hall 
elaborates the estimations with several dimensions. To reduce 
the level of the error on approximations, the authors reduce the 
dimensions of the space they work. They also give, estimations on 
statistical error of approximations. 

Gentle (2009), “Computational Statistics”, Springer, explores the 
estimation process of the densities on a kernel based, together with 
other techniques of smoothing on a topological space. 
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Tsybakov (2009), “Introduction to Nonparametric Estimation”, 
Springer, is playing in the nonparametric sphere, and explores 
the estimates in a one dimensional case. There are treated also, 
methods of construction of the estimators, their statistical properties 
(like convergence and rates of convergence), optimality of the 
estimators, etc.

Silverman (1986) “Density Estimation for Statistics and Data 
Analysis” Chapman Hall, describes also the details of the 
estimation process of a density distribution. It is probably the most 
comprehensive text, which explores the development of the concept 
and the main documents on the literature of that time.
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4. Concrete form of density estimates, 
one and multidimensional cases

In this chapter, we portray the methodology for the estimated 
densities for one and more dimensional cases, for some different 
kernels selected in advance. Enriching the list will be the focus 
of future research. In fact, the most important applications of 
the density estimates are in the multivariate space. Since the 
multivariate applications stand as the generalization of univariate 
applications, we are starting with one dimensional density 
estimators.

Densities that are modelled after some of the necessary 
transformations are given in their canonical form. Calculating and 
giving density estimations for some economic series represents the 
first overall outcome of this article. Those estimations and the actual 
analytical expression of the densities can be useful in the situations 
where the variables are used for policy analysis. In order to enable 
a wider range of involvement of the same densities, we are in the 
process of enhancing the list of kernels. Different considerations 
on which kernel can be used are described in the literature (we 
referred to some of them in the last chapter of this paper). Annex 
3 provides the compiled algorithms for calculations on estimators 
of densities.

4.1 Economic variables, one dimensional 
case

For the estimation of densities in one dimensional variable we 
consider four kernels, as described in the following table. Efficiencies 
calculations are given by Silverman (1986).
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Table 4.1.1.: Kernel densities and their efficiencies, one dimensional case
Kernel Density Efficiencies

1. Gaussian

2. Triangle

3. Rectangle

4. Epanechnikov 1

Presentation of the density estimation for each of the kernels is 
made using the formula 3.6. mentioned above.

In practice, to estimate the density of the distribution of an economic 
random variable we make the following assumptions.

Let’s be X a random variable with the density f(.), which will be 
estimated. Assume also that we have n realizations of this variable, 
respectively x1, x2, …, xn. 

To estimate the density f(.), using the kernels listed in the table 
above, we made substitutions and corresponding transformations 
and final functional forms are given below:

Density estimation with Gaussian kernel:

	 4.1.1.

where t ∈ R and h smoothing parameter.

Density estimation with Triangle kernel:
	 					   

,					     4.1.2.

where ai = {(h-|t - xi|),  for (h-|t - xi|) > 0 
	         	 0,           for (h-|t - xi|) ≤ 0,	 t  ∈ R.
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Density estimation with Rectangular kernel:

,			   4.1.3.

where ai = {1,   for (h-|t - xi|) > 0
	         0,   for (h-|t - xi|) ≤ 0, 	 t  ∈ R.

Density estimation with Epanechnikov kernel:

f ̂(t) =  ∙  ∑n
i=1 [1-  ], 	  4.1.4.

where  < , t  ∈ R .	

Practically, the above functional forms, given as functions of the 
variable t, serve as density estimates of density f(.) of random 
variable X. Discussions regarding the selection of kernel and 
parameter h, are given in the eighth chapter of this paper.

Those functional forms can be easily used in the case of the need 
for the explicit form of the density of an economic variable. 

The probability density function (PDF) theoretically represents 
the fullest stochastic information of an economic variable (or 
any random variable for that matter). The PDF based analysis 
can describe the variable and its random nature accurately, yet 
this information is not very informative in the day-to-day policy 
decision-making despite revealing the true probability nature 
during the entire known history of the variable. In the case of 
the socio economic developments, the researcher is interested in 
knowing the probability that a particular phenomenon materializes 
in the next s periods. Let us take inflation for example and assume 
that we know its mean and variance accurately; however, for the 
inflation targeting central bank, this information is useless unless it 
forecasts with accuracy the probability of inflation hitting the target 
value 12 months from now or 24 months from now. In this respect, 
the PDA would tell the bank the entire distribution of inflation 
without providing information where in this distribution inflation will 
be in the next periods. The central bank’s credibility and success 
depends on the predictability of this figure at these particular 
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moments in time, not on the mean of the inflation series, which 
stays the same regardless of the realization of the last inflation 
(experiment). In the same fashion, markets and policy makers are 
interested in knowing with predicted accuracy the future value of 
their final objectives and intermediate targets, and predict with 
accepted accuracy the effects of prescribed policies. In this respect, 
the probability density functions of each individual random variable 
would not be very helpful in terms of the dynamic developments of 
the multidimensional random events in the real word. The reason 
why the probability distribution analysis (PDA) of single variables 
does not satisfy these needs (therefore, it is not used despite its 
informative nature) derives from two important facts:

First, individual probability density functions (PDF) strips each 
realization from its time indexation. Therefore, in the context of 
PDA, the probability of the variable hitting a particular value is 
invariant to the time of investigation. 

Second, losing its time indexation the PDA loses the existing 
interrelations and relationships among individual variables of 
a multiple dimensional random event. Therefore, if one were 
to adopt the vision of the economy as a d dimensional random 
phenomena presented above focusing only on the analysis of the 
PDF of the economic variable x, is not very informative. This is due 
to the fact that probability distribution by itself neither preserves 
nor conveys information of relationship (dependence causality, co-
movement) between the expected value of variable x with the other 
d – 1 variables in the economy or its own previous values due to the 
absence of time or any other form of indexation.

From the point of view of the economists and policymakers, this 1 
dimensional nonparametric method could appear complementary 
of the existing methods and not sufficient. It can help in the 
observation of the stochastic feature of the density of the variable.

Literature acknowledges this problem and proposes the joint or 
multivariate density forecasts as a potential method to solve inter 
and intra-temporal dynamics in the contest of the PDF analysis. 
The method is based on the factorization of the random event 
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of interest into conditional and marginal probabilities, and the 
calculation of the probability integral transforms (p.i.t.) values for 
the conditional and marginal process separately.9 This method 
is discussed by Clements and Smith (2002)10, who find that the 
p.i.t. method lacks the power whenever correlation structure is 
miss-specified. The failure to preserve the temporal pairing and 
potential autocorrelation versus independence of the conditional 
and marginal process are potential sources of misspecification.

In this respect, our proposal broadens the above analysis with the 
introduction of the joint density probability function of the random 
event by estimating the JPDF of the d dimensional random event. 
The method has been successfully tested and applied in other 
fields of applied sciences. We here intend to introduce it in the 
study of economics with the general objective to understand and 
possibly replicate the random process that generates the vectors of 
economic data of interest at each moment in time or for a given 
time interval. That means to uniquely identify the “function” that 
yields the consecutive value or the set of future values when the past 
and current values of the related variables and the own past values 
are known. Despite "removing" the time indexation the method (by 
its design shown below) preserves the simultaneity of developments 
among the random variables of interest. The following section 
proceeds with the presentation of the d dimensional PDF of a 
random event. 

4.2. Economic variables d – dimensional case

Like in the one dimensional case, for d dimensional vectors of data 
the density estimates are given. For simplicity, we initially selected 
two densities in the role of the kernel, which are more useful in the 
relevant literature. Those densities are given in the table below.

Assume that t = (t1, t2,…, td)' is the variable (argument) from Rd.

9   See Diebold et al. (1998) for a description.
10 C lements, M.P., and Smith, J., 2002, Evaluating Multivariate Forecast Densities: a 
Comparison of Two Approaches, International journal of Forecasting, 18, 2002, pp. 
397-407.
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Table 4.2.1.: Kernel densities, d dimensional case
Kernel Density

1. Gaussian K(t) =       1      ∙ exp(- 1 t’t),           where  t ∈ Rd, K(t) ∈ R(2π)d⁄2 2

2. Epanechnikov

Ke (t) =  {   1     (d+2)(1- t’t),           if  t’t < 1    	
                  		

	      
0,                                   for other t 

,     where

Cd  is the volume of unit d dimensional sphere
t ∈ Rd,
Ke(t) ∈ R

2Cd

	 	

To provide kernel density estimation of the density f(.), first define 
variables of the sample and the variables of the density that we are 
trying to estimate.

Let us assume that there have been n realizations of the d 
dimensional variable X, respectively x1 , x2 ,…, xn . As vectors, the 
sample can be written:

{x1 = (x1
1 , x2

1 ,…, xd
1 )

  x2 = (x1
2 , x2

2 ,…, xd
2 )’

  xn = (x1
n , x2

n ,…, xd
n )  			 

4.2.1.

Let us assume that t = (t1, t2,…, td)' element of Rd, is the variable 
(argument) of the density that will be estimated.

As an analogy with the one dimensional case, the expression of 
the kernel density estimation K(t), for each of the kernels, as it is 
mentioned in Silverman (1986) and Wand and Jones (1995), is 
given as follows:

f ̂(t) =  ∙∑n
i=1K 1  (t - xi) , 	 4.2.2.

where: t ∈ Rd; x1 , x2 ,…,xn  are the elements of sample from Rd; and 
f ̂ (t) ∈ R.	

To estimate the density f(.), using the kernels mentioned in the table 
above, we made substitutions and corresponding transformations, 
and the final functional forms are given below:
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Density estimation, d – dimensional case, Gaussian kernel:

f ̂(t) = 
 nhd (2π)

d/2

1  ∙ ∑n
i=1 exp{- 2h2

1 [(t1- xi
1)2+(t2- xi

2 )2+⋯+(td- xi
d )2]},      4.2.3.

where: t ∈ R, h is smoothing parameter.

Density estimation, d – dimensional case, Epanechnikov kernel:

f ̂(t) = nhd 2∙Cd

1 d+2 ∙ ∑n
i=1ai, 	 4.2.4.

where: ai = {{1- h2
1  [(t1- xi

1)2 + (t2- xi
2 )2+⋯+(td- xi

d )2]}, if {…}>0
	             	

0				            , if {…}>0’

and  Cd = { (2
d)!

π
d⁄2 ,        d-even

 2 2
d+1

.  π 2
d-1

d!!
,  d-odd

Like in the one dimensional case, the functional forms above, which 
are given as functions of the variable t, serve as kernel density 
estimates for the density f(.) of the random vector X. Discussions 
relating with the choice of the kernel and the smoothing parameter 
h are given the eighth chapter of this paper.

These functional forms can be easily used in the case of need of the 
concrete density of a random vector.

Also, the list of potentially useful kernels could be extended based 
on the concrete needs of the research. The fix point is always that a 
kernel is density probability function. Other considerations on that 
choice relate to the efficiency of the kernel and the advantages that 
a kernel may represent towards the others. We discuss these issues 
in the following section.
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4.3. Measures of discrepancy, the best 
choice of the smoothing parameter 
h and the efficiency of the kernels – 
general considerations

In the case of univariate data, various measures have been studied 
relating to the discrepancy of the estimate f ̂(.) from the density we 
have to estimate f(.). The choice for one or another kernel sometimes 
is strongly related to the discrepancy measure that those functions 
(f ̂ (.) and f(.)) have between them. In further more complicated 
techniques, just because of the “measures of discrepancy” issues, 
the choice of the kernel is even “indifferent” for the main concept of 
the given definition of the kernel – being a probability density, and 
getting other types of functions. Such conditions are given in further 
mathematical studies of the natures of the estimates.

As a general estimator of the measure of the discrepancy, the 
literature considers a natural measure: the mean square error. 
Furthermore on that estimator, it has two appearances:

-	 as a local measure of the discrepancy in a single point t, 
shortly mentioned as MSE, defined by: MSEt f ̂  = E[f ̂(t) - f(t)]2,

-	 as a global measure of discrepancy in the zone where the 
distributions are defined, shortly mentioned as MISE, defined 
by: MISE (f ̂ )  = E∫[f ̂ (t) - f(t)]2 dt.

As the mean square error is common in the classical parametric 
statistics to measure the closeness of an estimate of a parameter with 
that parameter, this concept is quite known. This measure is also 
used, in the base literature which explores the density estimation.

Detailed considerations of the measures of the discrepancy are 
given in Wand and Jones (1995) for one and multi – dimensional 
cases. Also, Gentle (2009) treats them to evaluate this measure 
of discrepancy for function estimates in general. Tsybakov (2009) 
gives technical details and corresponding calculations on both 
types of measures. The transformations are given in details and 
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in a formal way. Silverman (1986) also describes the estimates of 
both types of errors in one and multidimensional cases.

Other authors try to give more specific forms to avoid the fact that 
after the calculations of both errors, it is still a function of smoothing 
parameter h, or how to calculate it exactly, etc., such as the efforts 
given by Marron and Wand (1992).

Regarding the smoothing parameter (or window width), there is 
a certain level of research trying to find optimized values of it, 
or, as it is sometimes called in the literature, “the ideal window”. 
The optimization procedure is normally based on minimizing the 
MISE mentioned above. The transformations of this optimization 
are given by “Parzen Lemma” (1962), and are also mentioned by 
Silverman (1986), where the optimum h is given by:

hopt = k2

-2⁄5 {∫RK(t)dt}1⁄5 {∫Rf(2) (t)2 dt}-1⁄5 n
-1⁄5,		 4.3.1.

where:

k2 = ∫
R      

t2 K(t)dt.

Further improvement of this base formula of h optimum can be 
found in the literature. So, Wand and Jones (1995) and Silverman 
(1986) give details in pure mathematical optimization procedures 
finding h, for different situations. Gentle (2009) also gives details 
and approximations of the h optimum. Additional comments on 
the issue are discussed in the eighth chapter of this paper “General 
discussion”.

On the other side, the optimized kernel (with the condition of being 
density probability, as mentioned in this paper), solved by Hodges 
and Lehmann (1956) and by Silverman (1986), gives the kernel 
Ke(.), as follows, and also suggest the density estimation techniques 
by Epanechnikov:

Ke(t) = {4 5
3  (1- 5

t2 ), - 5     < t < 5    
	     

   0,                     t other
	  	 4.3.2.



-28-

The idea of efficiency arose by comparing any kernel with the above 
mentioned one – Epanechnikov Kernel. The definition of efficiency 
of a kernel, as described by Silverman (1986) is:

eff(K) = 
5 5

3  {∫R t2 K(t)dt}
-1⁄2 ∙ {∫RK(t)2 dt}-1

,	 4.3.3.

Relating to the concept of efficiency, all other literature is referring 
to the same concept mentioned above. Choosing a high efficiency 
kernel is quite needed, as it is perfect legitimate to choose a kernel 
that fulfills other requirements, such as degrees of differentiability 
that can be necessary in some computational efforts.
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5. Intuition, result interpretation and 
data

Time series has been the workhorse of empirical analysis in the 
study of economic phenomenon. In principle time series methods 
calculate “the walk” of the variable around its mean along its 
distribution under the directions given by the matrix of estimated 
parameters, along with a i.i.d. set of errors. These errors measure 
the deviation in the location of the current realization of the variable 
at period t from the forecasted location based on the estimated 
parameters values, which are estimated from the covariance matrix. 

As described in chapter 2, time series methods build upon the 
probability theory to generate estimates of the parameter values 
of the random event. These probability based models are used to 
perform four major tasks for the benefit of the policymakers: first, 
provide a coherent and credible description of the economic data; 
second, provide reliable forecasts for economic variables; third, 
provide hints of the structural inference; and last but not the least 
provide good foundation or policy analysis. Stock and Watson 
(2001)11 provide a good discussion of the role and the performance 
of VAR in each of the four areas above. They also highlight the fact 
that certain aspects of the VAR methodology are more useful than 
the estimated coefficients themselves depending on the needs of 
the researcher or policymaker. Though the focus of the time series 
method is on the estimation of the parameters matrix, frequently 
coefficients may go unreported and the analysis relies more on 
exogeneity, structural form, variance decomposition, impulse 
response functions and the properties of the estimated matrix.

As an alternative and complementary to time series analysis, we 
propose the calculation of d dimensional joint density probability 
functions as anew and alternative nonparametric method of 
representation, analysis and forecast of the DGP of ad dimensional 
random variable in Rd. Therefore, in order to be an alternative, 
the new method needs to supply similar information and reliability 
in the description of the DGP like the rest of the existing methods. 
11 S tock, J.H., Watson M.W. (2001), Vector Autoregression, The Journal of Economic 
Perspectives, Vol. 15, No. 4. (Autumn, 2001), pp. 101-115.
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Despite its nonparametric nature, this new method is capable to 
provide similar information on policy and forecast analysis based 
on the likelihood of simultaneous realization of two or more 
particular random variables via conditioning of the estimated 
(calculated) d dimensional joint density probability distribution. The 
obtained conditional probabilities are based on one particular or 
a set of expected values of the event rather than on the marginal 
probabilities of the previous events.

Therefore depending on the interest of the research, policy analysis, 
or forecast one can calculate the JPDF of an m dimensional random 
event and report the DGP in the form of the joint conditional as 
Dxm(td, xd, f ̂  (∙)│td-m), where xm represents a m dimensional vector, 
m∈(1, 2,…, d-1), or unconditional process as Dxd (td, xd, f ̂  (∙)).

Based on the above representation of the DGP, the new method 
can perform similar tasks with econometrics methods for a scalar 
time series in all those cases where m=1 yielding forecasts based 
on the data in levels, as well as structural and shock analysis 
based on the first difference and on the percentage changes of the 
same data, giving this information in the form of the probability of 
distribution of xm– the variable of interest for each particular value 
or a set or vector(representing a set of values) of the other d – m 
random variables.

Generally, the analysis for each variable of interest xm is based on 
the comparison and the evolution of the moments of conditional 
distributions of xm. The method could also be used on differenced 
data (in order to remove potential build in common time or 
stochastic trends as is commonly the practice in time series)
or percentage changes in variables with respective distributions 
potentially revealing information regarding structural relationships 
or the contemporaneous links among variables and finally growth 
rates, respectively. 

The JPDA has the potential to provide information regarding 
another important issue, the constancy of the estimated parameters 
and potential structural breaks in the data, e.g. the existence of 
a multimodal relationship could potentially imply the presence 
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of structural breaks in the data or shifting relationships in the 
differenced or elasticity in percentage changes representation 
of the data.12 In this respect, the information coming out of the 
JPDF can potentially provide the researcher with the equivalent of 
causality, structural analysis, and impulse response and variance 
decomposition, which is the set of information provided by the 
current empiric investigation methods. 

In conclusion, calculation of the JPDF of a d dimensional random 
event opens the possibility to use this d dimensional JPDF to display 
in graphic representation and analytical form the JPDF of the 
random variables or subspaces of interest within this d dimensional 
random event given the known or forecasted values (restrictions) 
of the other d-1 random variables of our event. The resulting 
conditioned JPDF will provide at least the same or improved (in fact 
much more informative and real) information than the parametric 
method with regard to the four tasks above. Moreover, it does so 
without the setback required by the parametric methods. 

Meaning, one does not need to make assumptions regarding 
constant mean and variance, or the normality of the errors 
(distribution) including all other assumptions regarding the 
ordering (the endogeneity) of the variables and the structural form 
of relationships. These characteristics relax the functional and 
statistical needs for log linearization in the data. Therefore the 
data can be modelled in their natural form. Additional benefits 
derive from the fact that time series empirical analysis, and other 
parametric methods for that matter, are traditionally modeled and 
conducted on the log and log differences of observed variables. 
This log transformation of the original data is a necessity given 
the non-linear functional form of the economic relationships and/
or due to the particular interest in growth rate equations (or law of 
motions), which are commonly approximated by changes in the 
log of a variable. In addition log linearization brings additional 
statistical benefits related to the homogenous variance and the 
normality of the residual associated with the log models (See 
Bardsen and Lutkepohl (2011)).

12 I t remains to be tested and will be the target in our future research.
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Finally, due to the marginalization and conditioning process, which 
renders DGP workable for policy-related analysis as depicted by 
equation 2.1., the errors that are made in early periods in the 
process of forecast or impulse responses analysis do carry over and 
accumulate in the next periods. This accumulation results in the 
expansion of the confidence interval for each consecutive period 
of forecast or impulse responses analysis eventually leading to 
reduced predictability and accuracy in results. The representation 
of the DGP in the form 5.1 eliminates this error accumulation. 

At the current stage, the analysis of the densities based on a dataset 
of the Albanian economy is given as an illustration and is based 
mostly on the graphical presentation. As such, the analysis is limited 
to the two dimensional JPDF, due to lack of visualizing apparatus 
and intangible nature of d dimensional vector constrained by the 
three dimensional space. The results and their interpretation are 
given in the seventh chapter and in the first and second annexes. 
And this is one of the main constrains of the method mentioned in 
the base literature (see 4.5. at Silverman (1986)). Nonetheless, we 
have some more concrete results (still draft) that try to bypass such 
difficulty, which will be part of our future publication on this issue.
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6. Application of the density 
estimation method, study of 
variables, graphs presentations 
and interpreting the results

Density estimation represents a complete (comprehensive) method 
for estimation, analysis and simulation of a random phenomenon 
and, because of these attributes has found various uses in different 
fields of study. Our paper proposes the application of this method 
for economic and financial variables. In this chapter, we illustrate 
the use of those methods for a set of economic variables in the case 
of Albania. As mentioned above, the analysis of selected variables 
is based on graphical representation of the estimated one and two 
dimensional densities. 

In the case of this article, we will look at some key aspects 
(introductory) based on the application of the "density estimation". 
The selection of the variables we study and methods are presented 
below.

The data is used in the scalar form – per each of the variables 
the density estimates are evaluated, and vectorial form – density 
estimates of the random vectors are evaluated. Density estimates 
are given for several kernels.

6.1. Data description, modeling and 
graphics

In this section, we will illustrate the use of density estimation as 
a method of economic analysis investigating the relationship 
between money, inflation, exchange rate, GDP and the interest rate 
for the period 1998-2011 in the Albanian economy. Despite being 
very important elements of policy design and decision making for 
the Bank of Albania, the set of variables and their relationship is 
the objective of several research papers produced by the Bank 
of Albania staff, which provide abundant material to match and 
compare against our results. The dataset represents quarterly 
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observations for the period Q1, 1998 to Q4, 2011, and are 
reported in levels, first difference and as percentage changes (with 
the exception of the interest rate, which is reported only in its level 
and first difference form). 

Money is represented by the stock of monetary aggregate M2, as 
reported by the Bank of Albania. Exchange rate represents the nominal 
effective exchange rate (as estimated by the Bank of Albania)13, with 
positive changes representing ALL depreciation. GDP represents 
annualized gross domestic product statistics measured by INSTAT. 
Quarterly observations for the period 2005 -11 are reported by 
INSTAT, the rest of the period represents disaggregated quarterly 
GDP data of the annual ones reported by INSTAT14. CPI represents 
the consumer price index measured and reported by INSTAT. 
Interest rate variable represents the real interest rate of 12-month 
deposits as reported by the Bank of Albania. Money and GDP data 
are expressed in millions of Albanian ALL.

The modelling of the selected data consists in the following: we 
construct density estimates for the selected macroeconomic 
variables, one and multidimensional variables. To give the idea 
of allocation of probability one and two dimensional variables, we 
provide the graphical representation of these evaluators.

Graphic analysis is used as the first tool to explore the behavior of 
probability densities one or two dimensional. A challenge in that 
case, quite differently from the parametrical case where we faced 
well-known distributions, is to see behind the mixed shapes and 
colours of quite natural distributions – creating experience is a 
challenge that we suggest. 

Based on canonical concrete expressions of the density estimates 
mentioned in the chapter 4.1. and 4.2., we contributed to 
programming the software made for that case, as the readymade 
software in that field of research is missing. Firstly build in PHP 
13 S ee Vika (2006) for a description of the methodology. Vika, I., 2006, “Kursi real 
efektiv i këmbimit në Shqipëri - konceptet dhe matja e tij”, Bank of Albania WP series 
2(18), ISBN 99943-864-1-7
14 S tatistics and methodology come from the dataset of the Bank of Albania macro-
econometric model (MEAM)
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programming language; we plan to contribute to completing it with 
other techniques in density estimation in our future research on 
that field. The software actually creates graphical representations 
of one and two dimensional estimates, and also gives the graphical 
representations of d dimensional estimated density with d–2 and 
d–1 elementary conditions.15 

	
6.2. One dimensional density estimates 
of some macroeconomic data of the 
Albanian economy

For the variables described in the following table, the density 
estimates are represented in graphics, using Gaussian and Triangle 
kernels. The formulas used are given in 4.1.

Table 6.2.1.: Variable name and description, one dimensional case
Variable description Variable name Time period

M2 real (billions ALL) RM2-bln [Q1, 1996-Q4, 2011]

M3 real (billions ALL) RM3-bln [Q1, 1996-Q4, 2011]

CPI Index CPI [Q1, 1996-Q4, 2011]

Interest rate Euribor (percentages) ER_3M [Q1, 1996-Q4, 2011]

Interest rates 12 months deposits R-12M-Dep [Q1, 1996-Q4, 2011]

GDP real (billions ALL) Y-REAL-bln [Q1, 1996-Q4, 2011]

GDP nominal (millions ALL) YN [Q1, 1996-Q4, 2011]

Nominal Effective Exchange Rate, quarterly (ALL/Eur) NEER-3M [Q1, 1996-Q4, 2011]

The graphs of the density estimates are presented in Annex A1.

6.3. Two dimensional density estimates 
of some macroeconomic data of the 
Albanian economy

The data used are in level, in first difference and relative difference. 

15  “Elementary conditions”, as it is used in our paper (as analogy with “elementary 
event”), means that the probability condition is a single point, respectively in d-2 and 
d-1 dimensions.
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For those variables, the density estimates are represented in 
graphics, using Gaussian kernel. The formula used is given in 4.2. 
Surface and contour graphics representations are used.

Table 6.3.1.: Variable name and description, two dimensional case

Variable description Variable name Variable 
name

Variable 
description Time period

D
at

a 
in

 le
ve

ls

M2 real (billions ALL) RM2-bln CPI CPI Index [Q1, 1996-Q4, 2011]

M3 real (billions ALL) RM3-bln CPI CPI Index [Q1, 1996-Q4, 2011]

Interest rate R-12M-Dep CPI CPI Index [Q1, 1996-Q4, 2011]

GDP real (billions ALL) Y-REAL-bln CPI CPI Index [Q1, 1996-Q4, 2011]

Nominal Effective 
Exchange Rate, quarterly NEER-3M CPI CPI Index [Q1, 1996-Q4, 2011]

D
at

a 
in

 fi
rs

t d
iff

er
en

ce

M2 real (billions ALL) 
(First difference) dRM2-bln dCPI CPI Index

(First difference) [Q1, 1997-Q4, 2011]

M3 real (billions ALL) 
(First difference) dRM3-bln dCPI CPI Index

(First difference) [Q1, 1997-Q4, 2011]

Interest rate
(First difference) dR-12M-12-Dep dCPI CPI Index

(First difference) [Q1, 1997-Q4, 2011]

GDP real (billions ALL)
(First difference) dY-REAL-bln dCPI CPI Index

(First difference) [Q1,1997-Q4, 2011]

Nominal Effective 
Exchange Rate, quarterly
(First difference)

dNEER-3M dCPI CPI Index
(First difference) [Q1, 1997-Q4, 2011]

D
at

a 
in

 r
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

M2 real (billions ALL) pRM2-bln INF Inflation [Q1, 1997-Q4, 2011]

M3 real (billions ALL) pRM3-bln INF Inflation [Q1, 1997-Q4, 2011]

Interest rate dR-12M-12-Dep INF Inflation [Q1, 1997-Q4, 2011]

GDP real (billions ALL) pY-REAL-3M INF Inflation [Q1, 1997-Q4, 2011]

Nominal Effective 
Exchange Rate, quarterly pNEER-3M INF Inflation [Q1, 1997-Q4, 2011]

The graphs of the density estimates are presented in Annex A2.

Below we present the graphical representation of the density 
estimations for the variables described in Table 6.2.1. The kernels 
used in the density estimation are Gaussian and Triangle kernels, 
as mentioned in the label of the vertical axes in each graph.

As an interpretation: these are the forms of distribution of the 
Albanian economic variables represented.
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7. Conclusions

7.1.	P arametric methods of estimation have played an important 
role in the study of economics. Among them, time series analysis has 
become the fundamental tool of research in economics. However, 
the practical implementation of this theoretic framework is rendered 
possible only by a set of rigid restrictions and constraints. In this 
respect, the study of economics based on this method portrays 
the economy in a very unrealistic way and transforms the data to 
provide a different fit for these constrains. The purpose of this paper 
is to present and propose density estimates tools, in the framework 
of multidimensional probability analysis, as an alternative tool of 
empiric investigation of the economic phenomenon, without the 
restrictions imposed by time series and other parametric estimation 
methods. In principle, we propose defining the economy as a social 
phenomenon in the form of a random event in a d dimensional 
space. We use this definition to study the economy (the data 
generating process) in the form of a random event as a joint 
density function departing from the traditional difference equation 
framework. This interpretation comes after constructing the density 
estimates in the d – dimensional space, based on the mathematical 
postulate that knowing the values and the distribution of a random 
variable means that we know all the information about this variable.

7.2. 	O n this ground, the paper proposes the use of density 
estimation as a method of approximating through decomposition 
of the unknown density with known kernels. In that way, considering 
decomposing the stochastic information of our economic 
phenomenon in the form of weighted sum of known probability 
densities, we keep most of the stochastic information of a random 
phenomenon. In this respect we describe the methodology of density 
estimation in one and multidimensional cases for several selected 
kernels. The material provides the analytical functional forms of the 
one and multidimensional density function together with a broad 
discussion of the literature as well as a technical discussion on the 
choice of the kernel and the smoothing parameter. The study of 
economics through this alternative methodology leaves behind the 
restricting assumptions employed in the current empirical methods 
including the reliance on normal distribution family.
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7.3.	T he fundamental change proposed by the density estimation 
method is that the correlations and comovement of the economic 
variables are defined, in substance, from the probability measures 
rather than from the values of those variables. The advantage of 
the proposed methodology over other nonparametric probability 
based inference methods is that multidimensional density function 
preserves the simultaneity of singular event occurrence across all 
dimensions of the random event during the time of investigation. 
Therefore conditioning the process along one or more (up to d-1) 
dimensions provides the conditional density estimates of occurrence 
for the variable(s) of interest with the moments of resulting 
distribution yielding similar information to the other currently 
used empiric investigation methods. The conditional analysis can 
be applied with scalar or vector condition (representing dynamic 
movement in the known variable), with the results representing the 
dynamic movements of the conditional distribution of the random 
event. Even further probabilistic analysis may give more detailed 
results based on analysis of marginal distributions.

7.4. 	T he purpose of the paper was to present the density 
function as an alternative method to describe and visualize the 
data generating process and as an alternative mean of empirical 
investigation. For illustration purposes, we have applied the 
proposed method to the study of relationship among inflation, 
money, income, interest rate and exchange rate in the case of 
the Albanian economy. The results in this paper are presented in 
graphical form, which limits the analysis to two dimensional case. 
The paper reports for the first time density estimate functions for 
inflation with each of the other variables. 

Looking at the graphs, it is interesting to observe the shapes and 
generally the forms of densities. So normally we interpreted them 
in the following way: 

-	 We observed some multimodal distribution located near the 
same linear path, which we interpreted as an indication of the 
variables sharing the similar stochastic or time trends.

-	I n the most dominated unimodal distribution we accept them 
in some cases as an uncorrelated bi-dimensional distribution. 
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Anyway, the correlation could and must be calculated in some 
cases, especially when the form of the distribution is oval 
shaped.

-	T he same conclusion is drawn even in the cases when many 
bell shapes are irregularly distributed around the horizontal 
plane.

-	O val shape probabilistic allocations, which are located 
almost orthogonal with one of horizontal axes, are in fact low 
variance on the axe of orthogonality relatively to the variance 
of the other axe. We interpret this observation as a sign of 
independency on those variables.

Further analysis could be based on the visual interpretation of 
density estimates. Also, getting a deeper interpretation is straight by 
interpreting the moments of conditional density functions. However, 
we acknowledge that this process might yield the challenge of 
dealing with “strange” distribution from the reality.

7.5. The illustration engages macroeconomic variables but the 
density estimation is useful and can be straight forward extended 
to the study of phenomenon that is described in the form of a 
random event, especially in the cases of large data sets where the 
marginalization of conditional probabilities renders the parametric 
estimation methods difficult due to the large number of calculations 
and low degrees of freedom. 

This work is extended in several directions, which will be the focus 
of our future research.
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8. General discussions for the 
methodology and future research

The methods we propose in this paper have the potential to provide 
a lot of answers relating to the history of the economic variables 
and their relationship and, on the other side raise a lot of questions. 
In this chapter, we would like to bring to the reader’s attention and 
discuss few important issues that emerge from the base literature 
and also from our experience in dealing with the application of the 
methodology in the estimation of densities.

The choice of the kernel:

-	S ome of the questions that may rise on the choice of the kernel 
that we use on the density that can be used. Practically, based 
on our attempts, the general considerations of the choice of 
the kernel relate to the aim of the use of the density estimation. 
In general, if we look for a smoother curve or surface, we 
have to choose a “more smoothed” kernel. However, the 
choice of the kernel will also depend on the expression of 
the density in the analytical transformations, as we have to 
choose a kernel that is possible to be easily transformed 
from the mathematical operators we plan to apply, i.e. such 
as degrees of differentiability that can be necessary in some 
computational efforts. Anyway, as we mentioned in this paper, 
we suggest the “smoothing parameter” h as an alternative 
(or better way) to achieve desired smoothness in respective 
one and multidimensional density estimates. A very important 
point that we have to consider is that: a discontinuity estimator, 
as the histogram itself is, gives extreme difficulty in a process 
where estimates of the derivatives are required.

Further in that framework, in the literature there are different ways 
of modifying the kernel method into similar methods that are 
suggested for different situations.

So, the nearest neighbour class of estimates represents the effort to 
arrange the amount of smoothing to the local density of data. In 
that framework, they are normally used in the study of the tails and 
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is unlikely to be appropriate to study the density as a whole, since 
this estimate is not itself a density. The adaptive kernel method, 
as is shown by Silverman (1986), has certain potential practical 
advantages over both the kernel and the nearest neighbour 
methods as a method for smoothing long tail distribution. Other 
methods come directly as “smoothing of a function” techniques, 
like orthogonal series estimates. They are derivative of all orders 
and can be efficient in the cases similar to their application in the 
other types of functions than densities.

-	B ased on our experience, all the methods used have their own 
pro and cons elements. However, despite all arguments, the 
use of kernel methods is the best and most practical choice; 
especially in the case when one studies the density as a whole. 
If the situation calls for the study of local features of the density 
curve, other local estimates can be chosen.

The efficiency of the kernel:

-	A nother feature on the choice of the kernels is the efficiency. 
Optimization process of minimizing measures of discrepancy 
between a density that must be estimated and the estimate gives 
a solution of the most efficient kernel, which is Epanechnikov 
kernel in one dimensional case, as is mentioned in 4.3. Details 
on the techniques of the optimization are given in the main 
literature of the field mentioned in this paper.

It is also worth mentioning that any other one dimensional kernel 
used has the efficiency less than 1, as it is defined here.

-	 Finally, approaching an answer to the main question “which 
kernel to use and when”, what we can add to the findings 
of the main literature, based on our empirical work, partly 
published in this paper, is: to know the main features of a 
concrete distribution, try with the main known distribution 
(as in chapter 4) and keep in control the efficiency and the 
smoothing parameter.
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The choice of the smoothing parameter h.

-	O ther questions relate to the choice of the smoothing 
parameter h. Literature suggests easily practical guidance 
on the optimal choice of the smoothing parameter h. The 
experienced user can try different values of h considering the 
general rule that: small values of h may increase ‘statistical 
noise’ of the density estimates and large values may cause 
the loose of the statistical attributes. As we mentioned in this 
paper, there exist research relating with the optimization of 
the smoothing parameter. Silverman (1986), Wand and Jones 
(1995), Gentle (2009) etc., described techniques in ideal 
window width and kernel.

Based on our experience, we suggest higher values of h in the 
study of the whole density and smaller values of h whenever the 
focus of investigation falls on particular local topography of the 
density. To be mentioned is that based on our experience, we can 
suggest optimized values of h if the interest is on viewing the density 
estimates as a whole and smaller values of h if the interest is in a 
narrow local zone of the density. In the procedures that need to 
produce a large number of graphs, and because of this reason 
need to be automatised, the literature suggests approximations of 
h. The relating literature is mentioned in 4.3. in more details.

-	 The choice of the smoothing parameter in the multidimensional 
spaces in principle is “liberalized” in the meaning that it 
is not obligatory to choose the same unified smoothing 
parameter in all directions (dimensions) of the space Rd of the 
variables of the density estimates. So, in that way, the needed 
modifications of the formula 4.2.2. can be made. This is 
considered in the literature as the more sophisticated ways of 
choosing the windows width and in substance is advised to be 
applied relating with the densities, which appear radically not 
symmetric.

-	 What we can suggest is that “playing” with different values of 
smoothing parameter h is a necessity. Empirically, we may find 
values of h, which optimized the shape of the density estimate.
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In terms of potential application and our future research, we will 
continue to apply this method in the exploration of the particular 
features of economic variables and their interaction respectively via 
the investigation of one and multidimensional, density estimation 
techniques proposed in this paper.
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Annex 1: One dimensional density 
estimates of some macroeconomic data 
of the Albanian economy – graphical 
representation of density estimates.

Below we present the graphical representation of the density 
estimates for the variables described in Table 6.2.1. The kernels 
used in the density estimates are Gaussian and Triangle kernels, as 
mentioned in the label of the vertical axes in each graph.

As an interpretation: these are the forms of distribution of the 
Albanian economic variables represented.

Graph A1.1.: Density estimates for the variable M2 real
(bln ALL), for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.2.: Density estimates for the variable M3 real
(bln ALL), for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.3.: Density estimates for the variable CPI Index,
for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.4.: Density estimates for the variable Interest rate Euribor 
(percentages), for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.5.: Density estimates for the variable Interest rates 
deposits 12 months, for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.6.: Density estimates for the variable GDP real
(bln ALL), for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.7.: Density estimates for the variable GDP nominal (mln 
ALL – devided by 000), for the time period [Q1, 1996 – Q4, 2011]
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Graph A1.8.: Density estimates for the variable Nominal Effective Exchange 
Rate quarterly (ALL / EUR), for the time period [Q1, 1996 – Q4, 2011]

 

G
a
us

si
a
n 

K
er

ne
l -

 v
a
lu

es
 o

f 
d
en

si
ty

 

Tr
ia

ng
le

 K
er

ne
l -

 v
a
lu

es
 o

f 
d
en

si
ty

 

x - values x values

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00 50.00 100.00 150.00 200.00

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00 50.00 100.00 150.00 200.00



-50-

Annex 2: Two dimensional density 
estimates of some macroeconomic data 
of the Albanian economy – graphical 
representation of density estimates.

Here we illustrate the method by applying it to explore the 
relationship among inflation, money, interest rate, exchange 
rate and aggregate demand (approximated by GDP). The data 
are described above in section 6.3. Here we discuss an intuitive 
interpretation of the two dimensional graphical representation of 
the data in level, difference and percentage changes (with the 
exception of the interest rate, which is only in its level and difference 
form). We have to note that, as mentioned in the paper, in the third 
dimension there are the values of the function of density estimates.

Data in level of the variables

Graphs A2.1. – A2.5. represent density estimates of joint density 
distribution of two dimensional vector of inflation and all other 
economic variables, all in levels. The first interesting observation is 
that all graphs, with the exception of the interest rate and quarterly 
exchange rate, show that it is highly probable to find density 
estimates that are positioned along the diagonal indicating a 
positive relationship between the level of CPI and Money. Or the 
existence of a joint time trend in the data. There is no clear pattern 
of densities emerging in the case of interest rate and exchange 
rate. However, the presence of multiple bell shapes scattered 
along the graph indicates that the variables are not independent. 
Independence in the data in level would imply the existence of a 
single and regular bell shaped graph. 
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Graph A2.1.: Density estimation for the variables CPI and M2 real
(bln ALL), Gaussian kernel, for the time period [Q1, 1997 – Q4, 2011]
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Graph A2.2.: Density estimates for the variables CPI and M3 real
(bln ALL), Gaussian kernel, for the time period [Q1, 1997 – Q4, 2011]
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Graph A2.3.: Density estimates for the variables R and CPI,
Gaussian kernel, for the time period [Q1, 1997 – Q4, 2011]
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Graph A2.4.: Density estimates for the variables Ymld and CPI,
Gaussian kernel, for the time period [Q1, 1997 – Q4, 2011]
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Graph A2.5.: Density estimates for the variables NEER and CPI,
Gaussian kernel, for the time period [Q1, 1997 – Q4, 2011]
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Data in first difference of the variables

Being aware of the fact that the relationship in levels could be driven 
by the presence of the time or other commonly shared stochastic 
trends, we continue the investigation by repeating the procedure 
with the differences and percentage changes.

The results for the differenced series are presented in charts A2.6. 
– A2.11. In principle, assuming the existence of a relationship, one 
would expect that similar changes in one variable are matched by 
similarly scaled changes in the other variable, portrayed by the 
presence of a single bell shaped graph or a regularly shaped set of 
bells streamlined along the diagonal or any other regularly shaped 
curve.

The graph that emerges is different from the one in the levels. In the 
case of money M2 and M3, density estimates16 are represented by 
many irregular bells with modes concentrated mainly in the d(CPI) 
interval 0 and 5. Changes in money M2, M3 and CPI are not 
uniform; surprisingly, in both cases, it seems that the probability of 
having a larger change in CPI increases with the lower or negative 
changes in money almost indicating a negative relationship between 
changes in money and changes in inflation. This is a surprising 
result from the theoretic point of view.

The density estimates for the vector [d(CPI), d(R-12M-3-Dep)] 
yielded more or less a regular bell, which can be interpreted as 
a sign of a single linear slope for the relationship between both 
random variables. The mode of the joint distribution is, however, 
located close to the coordinates [3, 0] in the plane [d(RM3-bln), 
d(CPI)]. Both scalar values are close to the deserved monetary 
policy equilibrium, with a lot more variance in the interest rate than 
in d(CPI). 

The same can be said with regard to the density estimates of the 
vector [d(CPI), d(YN)]. The chart reveals a single bell in the interval 
0-5 for d(CPI) component. Less probable events are located along 

16 I n that part, we are referring to data on first difference, so we are not mentioning 
it specifically.
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the northwest – northeast diagonal, providing evidence that joint 
events are observed along the diagonal, albeit with a very low 
probability. Most of the density estimates that the events are jointly 
distributed with the mode falling at around 10 and 2, for d(YN) and 
d(CPI), respectively.

In all cases above, it is interesting to observe that the bell shaped 
density estimates function tales a similar variance distribution along 
d(CPI) with the mode happening approximately at the middle of 
the interval. It is surprising to observe that density function along 
the d(CPI) dimension does not change depending on the paring 
random variable.

The graph is almost the same in the case of the d(CPI) with d(NEER-
3M), with the only difference that the density estimation depicts 
more activity in the north-eastern corner of the graph A2.10. 
And the tail of the distribution of the main “bell” becomes fatter 
in the d(CPI) dimensions. Regardless of the shape of the density 
estimates function indicates independence between variables. 
Graph A2.11., which depicts the d(CPI) – d(NEER –12M) rate, 
presents a similar situation. However, there is a more pronounced 
evidence of densities located in the north-eastern corner. The 
presence of the multimodality in the ∆(NEER3m) happens along 
the 0 – 5 interval on the Δ(CPI), with all modes falling more or 
less in the middle of the segment 0 – 5. The overall graph would 
indicate independence; however, there is neglectable evidence that 
indicates a simultaneous increase in the volatility in Δ(CPI) and 
∆(NEER3m).
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Graph A2.6.: Density estimates for the variables CPI and M2 (data on first 
difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.7.: Density estimates for the variables CPI and M3 (data on first 
difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.8.: Density estimates for the variables R and CPI (data on first 
difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]



-61-

Graph A2.9.: Density estimates for the variables Y and CPI (data on first 
difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.10.: Density estimates for the variables NEER 3m and CPI (data on 
first difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.11.: Density estimates for the variables NEER (annual) and CPI (data 
on first difference), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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 Data in percentage changes

Finally, we repeat the same exercise on density estimation of the 
percentage changes of the variables. However, before starting the 
narrative, we would like to remind the reader that the percentage 
changes have transformed the CPI variable into inflation. 

Assuming the existence of a relationship between inflation and our 
variables of interest, one would expect that percentage changes 
in one variable are matched by corresponding scaled percentage 
changes in the other variable, portrayed by the presence of a 
single bell shaped graph or a set of bells in the case of multimodal 
distributions. 

The results of density estimation are shown in graphs A2.12. – 
A2.17. These graphs seem to depict a little more action in terms 
of densities.

In both cases, M2 and M3 (in graphs A2.12. – A2.13.), density 
estimates are clearly depicted by a multimodal distribution along 
the money dimension, with dominant ones close to 3 percent of 
inflation. The variance of the money growth does not seem to affect 
the variance of inflation – the traces of the main bell that results 
from the intersection of itself with the plans orthogonal to horizontal 
plan, along money dimension, yields different curves with similar 
variance.

Despite this dominant characteristic in both cases (M2 and M3), 
there is a clear density pattern evolving along the diagonal indicating 
again a negative relationship between money and inflation. 

Patterns are less pronounced in the INF – R and INF – Y 
(respectively in graphs A2.14. – A2.15.), to re-emerge in the 
INF – NEER relationship (in the graphs A2.16. – A2.17.). The 
latter depict increase in the probability of observing densities in 
the southwest-northeast diagonal. 

Overall, it is striking to observe that the variance along the ∆CPI 
and INF dimension stays within the same interval and is not clearly 
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affected by any of the other random variables of interest. While 
we do not report estimates of expected values of inflation (this will 
be the focus of future research), the charts seem to imply that it 
is very likely (with a high probability) that CPI and inflation are 
not affected by simultaneous (within the same quarter) changes in 
money, economic activity, interest rate and exchange rate. Price 
developments seem to follow more or less their own trend, yielding 
inflation very close to the objective of the Bank of Albania, 3±1 %, 
potentially interpreted as a sign of public’s credibility in the Bank of 
Albania and its monetary policy.
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Graph A2.12.: Density estimates for the variables INF and M2 (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.13.: Density estimates for the variables INF and M3 (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.14.: Density estimates for the variables R and INF (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.15.: Density estimates for the variables Y and INF (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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Graph A2.16.: Density estimates for the variables NEER 3m and INF (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011].
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A2.17.: Density estimates for the variables NEER (annual) and INF (data on 
percentage), Gaussian kernel, for the time period [Q1, 1997-Q4, 2011]
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 Annex 3

Algorithms given in this chapter are a direct output of the formulas 
posed in the fourth chapter. They are constructed for one and 
multidimensional densities. In each of them, the functions of the 
densities are constructed and additional technical explanations are 
given on the graphical design techniques.

In the first block of algorithms: algorithm 1 – algorithm 4, we 
construct density estimates on a given sample x1, x2, …, xn using a 
one dimensional kernel as they are given in 4.1.1. – 4.1.4. To see 
the graphical map of each density, plot a 2 dimensional graph 
(t,f ̂ (t)),∀t ∈ R. To judge on the variations of the density relating 
with the smoothing parameter h, repeat the algorithm for different 
values of h – also, optimized values of h have to be considered.

Algorithm 1: Density estimates and graphic map of the sample 
x1, x2, …, xn using a normal kernel

Step 1: Fix a parameter h > 0.

Step 2: ∀t ∈ R, calculate .

Step 3: End.

Algorithm 2: Density estimates and graphic map of the sample
x1, x2, …, xn using a triangle kernel

Step 1: Fix a parameter h > 0.

Step 2: ai = {(h-|t - xi|),  for (h-|t - xi|) > 0 
	         	   0,           for (h-|t - xi|) ≤ 0,	 t  ∈ R.

Step 3: Calculate ,	

Step 4: End.
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Algorithm 3: Density estimates and graphic map of the sample
x1, x2, …, xn using a rectangular kernel

Step 1: Fix a parameter h > 0.

Step 2: ai = {1,   for (h-|t - xi|) > 0
	          0,   for (h-|t - xi|) ≤ 0, 	 t  ∈ R.

Step 3:Calculate .

Step 4: End.

Algorithm 4: Density estimates and graphic map of the sample
x1, x2, …, xn using a Epanechnikov kernel

Step 1: Fix a parameter h > 0.

Step 2: ∀t ∈ R, calculate:

if t ∈ R,   < , then f ̂(t) =  ∙  ∑n
i=1 [1-  ].

Step 3: End.

In the second block of algorithms: algorithm 5 – algorithm 6, we 
construct density estimates on a given d dimensional sample of size 
n: x1 , x2 ,…, xn  using a d dimensional kernel as they are given in 
4.2.3. – 4.2.4. In this general case the points of the density are in 
d + 1 dimensional space: (t, f ̂(t))∈Rd+1, ∀t ∈ Rd.

While the following algorithms are posed to construct the values 
of densities in d dimensional samples, the graphical representation 
can be done only if d = 2, means: (t, f ̂(t))∈R3, ∀t ∈ R2.

Like in the one dimensional case, to judge on the variations of 
the density relating with the smoothing parameter h, repeat the 
algorithm for different values of h.
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Algorithm 5: Density estimates of the d dimensional sample
x1 , x2 ,…, xn  using a normal kernel

Step 1: Fix a parameter h > 0.

Step 2: ∀t ∈ Rd, calculate:

f ̂(t) = 
  nhd (2π)

d/2

1  ∙∑n
i=1 exp{- 2h2

1 [(t1- xi
1)2+(t2- xi

2 )2+⋯+(td- xi
d )2]}.

Step 3: End.

Algorithm 6: Density estimates of the d dimensional sample
x1 , x2 ,…, xn  using Epanechnikov kernel

Step 1: Fix a parameter h > 0.

Step 2: Calculate: Cd = { (2
d)!

π
d⁄2 ,        d-even

 2 2
d+1

.  π 2
d-1

d!!
,  d-odd

Step 3: ∀t ∈ Rd, calculate:

ai = {{1- h2
1  [(t1- xi

1)2 + (t2- xi
2 )2+⋯+(td- xi

d )2]}, if {…}>0
	             	

0			            , if {…}>0’

Step 4: Calculate: f ̂(t) = nhd 2∙Cd

1 d+2 ∙ ∑n
i=1ai.

Step 5: End
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